The insertion of peripheral intravenous (IV) lines is an extremely common procedure, practiced on approximately four out of five hospitalised patients. Issues are being raised concerning the hygienic aspects of the injection port of peripheral ported catheters (1, 2, 3).

Recently the choice of IV catheters has improved both patient care and the protection of caregivers.

We report here on our experience with IV catheters. In the past, our hospital used the BD Venflon™ (BD Infusion Therapy AB, Helsingborg, Sweden), followed by the BD Venflon Pro™. Recently we began using the BD Safelon Pro™ and most recently we have introduced the BD Nexiva™ (Fig. 1). The latter is a completely closed IV catheter system (Table 1).

A peripheral catheter is usually less than or equal to 7.5 cm in length, uses stainless steel needles and a plastic cannula, is limited to short-term or single-dose administration and should deliver therapy into peripheral veins without causing infection, leakage or extravasations. In the Netherlands, ported catheters are very popular, but its disadvantages include blood spilling and the risk of inadvertent prick accidents. An optimal peripheral IV catheter (Table 2) should reduce complications including phlebitis, thrombosis, haematoma formation at the puncture site as well as infiltration and rarely tissue necrosis. Additionally an ideal catheter should provide protection to the user against sharps injury and have advanced engineering to ensure ease of use (clearly visible and rapid flashback; flexible and needle-less access; and easy maintenance). Safety and comfort for the patient must be non-negotiable features.

Multi-lumen port access catheters provide many of the advantages of a central venous catheter. The inclusion of an additional port on the catheter itself (the ‘ported’ catheters used frequently in Europe), the attachment of a stopcock or, most cleverly, the use of an extension tubing (either attached or integral to the catheter) with multiple ports are current approaches to making peripheral catheters ‘multi-access’.

The BD Nexiva™ integrated IV catheter system has many of these advanced features. It includes a safety IV catheter, an extension tubing with Y-connection or integrated stopcock and a BD Q-Syte™ needle-less access system. The Q-Syte™ can be accessed with Luer Lok (screw-on) or Luer Slip (tapered) syringes. The former may give a more secure connection. However the latter are perfectly acceptable: giving Luer Slip syringes a ¼ turn may ensure that no disconnection occurs. Regardless of the connector used, it is very important that the Q-Syte™ be cleaned with an antisepctic solution (and allowed to dry) before any device is inserted. The catheter itself is made of Vialon™ (BD Infusion Therapy, Sandy Utah, USA), biomaterial, a special designed medical grade polyurethane reducing phlebitis significantly (4, 5, 6). The two soft wings come with holes which allow for suturing, if needed. However, most peripheral catheter insertions require no suturing.

Not surprisingly, this integrated IV catheter system requires some modifications in insertion technique in comparison to the conventional IV catheter. Place the index finger on the push tab, the middle finger on the soft wing and thumb on the septum. The primary flashback is observed through the notch in the tip of the needle as soon as the needle tip enters the vein. While threading the catheter, secondary flashback is observed in the extension tubing. At this point the tourniquet is released. As long as the catheter is in the vein, there is continued blood flow in the extension tubing all the way to the vent plug where the blood stops. This avoids unnecessary blood contact. While withdrawing the needle from the catheter, the soft wings should be fixated by pressing a finger on one of them. Upon

Correspondence address: Prof. dr. A. van Zundert, Department of Anesthesiology, ICU & Pain Therapy, Catharina Hospital – Brabant Medical School, Michelangelolaan 2, Eindhoven, 5623 EJ, The Netherlands. E-mail : zundert@iae.nl.
The needle tip is automatically shielded thus protecting the healthcare worker from needlestick injuries.

Once the needle is withdrawn and has been shielded it cannot be inserted into the cannula again. Furthermore, the hub, after needle withdrawal, cannot be accessed by any device (e.g. syringe, tubing, plug). At this point, the extension line has to be clamped before removing the vent plug and either connecting the infusion line or flushing and attaching the white cap. The three-way stopcock version (Fig. 1) does not have a clamp. The valve serves this function.

Our experience with the new BD Nexiva™ integrated IV catheter system is limited to hundred insertions; but so far it has been positive. We have found that the grip on the catheter is designed in such a way as to make vein access quite easy. Confirmation that one is in, is provided via a clear primary flashback. Patients seem to experience less pain due to its sharp needle. Once withdrawn, the needle tip is covered automatically thus protecting the patient and the caregiver from needlestick injuries.

Table 1
Characteristics of IV needles

<table>
<thead>
<tr>
<th></th>
<th>Ported IV cannula</th>
<th>Integrated valve</th>
<th>Needle tip protection</th>
<th>Integrated extension line</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD Venflon™</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BD Venflon Pro™</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BD Safelon Pro™</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>BD Nexiva™</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2
Advantages of new IV cannula over previous IV catheters

- rapid reliable blood flashback via notched needles
- reduced pain to patient*
- lower infection and thrombotic risks**
- simplicity in dressing, resistant to snagging
- needle-less access to ports
- more closed to bacterial entry
- reduced needlestick risk
- minimal blood exposure for the user

* a function of many factors including: the sharpness and geometry of the needle tip, the gauge of the catheter, the nature of the plastic in the catheter, the skill and speed of the inserter and the skill at preparing and distracting the patient.

** a function of many factors including: the catheter material, the agent and procedure used to prepare the skin, the drug injected, the post-insertion site care and the sterility of infusions given.

Fig. 2. — Non-activated (top) and activated (bottom) versions of the BD Nexiva™. The white portion (catheter body) is used for gripping the device. Once inserted into the vein, the catheter body is withdrawn completely and the needle is automatically sheathed (see lower picture), thus protecting from accidental needlestick injuries.

© Acta Anæsthesiologica Belgica, 2005, 56, n° 3
needle-less valve containing silicone and can also be used to attach another IV line, administer medication or blood withdrawal. There are additional convenience features. The flat profile of the BD Nexiva™ IV catheter allows dressing to cover it smoothly without wrinkling or binding up. Therefore it is less likely to catch on objects in the environment.

There are two features of BD Nexiva™ that could be improved. In few occasions, secondary flashback (via extension line) stops too early, leaving a gap in the tubing containing air. This can be solved by aspirating the remaining air from the tubing. The BD Q-Syte™ is not a one-way valve, so that backflow is possible if a syringe is attached. The BD Nexiva™ stopcock version solves this issue.

In conclusion, our experience with the BD Nexiva™ peripheral IV catheter indicates that it provides better IV access to peripheral veins, with less pain to patients and with rapid and clearly visible primary and secondary flashback of blood. By having all the add-ons (valve, extension tube, stopcock) already integrated into the device, infection risk should be reduced. Above all this IV cannula prevents needlestick and blood exposure, which is a dramatic improvement in an era where risks of infections are increasingly due to blood exposure.

References